CALCULATING THE INTERPHASE RESISTANCE ON
CONDENSATION OF PURE SATURATED VAPORS
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and G. E. Gorelik

An approximate analytical solution is obtained for the problem of the condensation of pure
saturated vapors, with consideration given to the interphase resistance for certain special
cases. The results are compared with experimental data.

The classical Nusselt [1] solution for the film-condensation problem was subsequently refined by
several authors [2-6].

The condensate temperature at the vapor-liquid interface was assumed to be equal to the vapor-satu~-
ration temperature in all of the above-cited references.

However, we know [13, 14] that on condensation of the vapors of any liquid the condensate surface is
supercooled, i.e., the temperature difference between the saturated vapor and the condensate at the phase
separation boundary is not zero. This temperature difference reflects the existence of interphase resis-
tance, which becomes particularly pronounced in the case of the vapor condensation of liquid metals [7-9].

Reference [15] describes a simple graphoanalytical method of determining the temperature jump at
the boundary of phase separation. The method of integral relationships was used in [9] to undertake a theo-
retical investigation of the condensation of liquid-metal vapors. A solution was achieved in [10] for the
problem of water~vapor condensation at low pressures; however, as demonstrated in [11], an incorrect
boundary condition was used to account for the interphase resistance.

The purpose of this paper is to dervie an analytical solution for the film-condensation problem as it
pertains to saturated vapors and a vertical wall, without resort to the method of integral relationships.

Below we examine cases of vapor condensation, primarily at low pressures. The simplifications
associated with neglect of the inertial forces and the supercooling resulting from convection are completely
valid in this case. The problem of the condensation of a pure nonmoving saturated vapor on a vertical wall,
with consideration of the interphase resistance, reduces to the following boundary-value problem (we neglect
the effect of the shearing stresses at the boundary of phase separation):
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TABLE 1. Theoretical Data on the Condensation of Water Vapor
for To,— T, = 10°

p.N/m’| T_,k | 8 l0+m 6 saom | To—T, . °K % A0 m
101300 373,16 0,774 1 0,774 10 0,00059
0,04 0,767 9,72 0,029
13300 324,74 0,891 1 0,891 10 0,0026
0,04 0,859 8,95 | 0,129
1330 284 4 1,063 1 1,059 9,89 0,016
0,04 — — 0,77
oT
peL =1 -, )
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—pz = ( Po — , (6)
2—o\ V 2rRT, V' 2nRT.
where
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z= ('udy , (7)
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)

Equations (1) and (2) with boundary conditions (3)-(5) have solutions of the form

U= i(g;y_._y.z_), (8)
v 2
T=%+pfy- ®)
According to (7) and (8), for z we have
pm L 40 _ 8 4 (10)

v dx 3v dx

We have to use the remaining boundary condition (6) to determine &(x). Here we have to distinguish
two cases (I and II).

I. The temperature difference T, T, across the condensate film is small (several degrees). This
is the case in the condensation of liquid-metal vapors at low pressures. The pressure p; in (6) can then be
expressed in terms of the known quantity p , (the saturation pressure, which corresponds to the wall tem-
perature T ), linearizing the formula for the saturated-vapor pressure at tbe segment T, —T

W
Having rewritten (6) to the form [12]
2 T,—T
—pr= 2 I S (po—pm)—}-p_“"(_”_l’)_ )

2—a V2aRT, 7T,
after linearization we have

RT2 - — P, T,\

To=To+ oL I:"‘ P sz2nRTm_pm T g (3—_7‘—10) . (11)

Having substituted (11) into (9), and using (10), we derive the equation for the determination of the film
thickness 6(x)
_g RTZ2 RT2 [ p, ( T,
Lpg d &%)+ 2—0 208V 2nRT, a (6%) = Lm e (3 — D,
4vh  dx o] 6p,Lv dx Pule ),
Using the notation

- T (12)
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TABLE 2. Comparison of Theoretical and Experimental Data on
the Condensation of Mercury

« g « | &
E . o FJ E ° -0 B
= I3 13 31 p 3 T
X 5 5] 7 : 3 =
S °. = hi 2 o & T - ]
- s .8 = el ﬁ L ° 82‘3
I S N < o & ® ® =~ E X ‘:l“

186,2)357,20|405,401109322| 0,424 | 1,419{0,522| 0,516 | 0,49 ; 0,39 | 176,2 | 28,08
1117,2(439,66/451, 73|227250| 0,523 | 0,996 10,535 | 0,5301)| 1,20 | 0,89 | 7,565 | 5,29
2261 |457,36|472,49/314010{ 0,580 | 1,054 {0,377 0,365 1,79 | 1,28 | 7,411 7,64
*Given the same pressure P , the temperature T is given somewhat lower here
than in [8], since for the case described in that reference the vapor in the condensation
chamber was slightly superheated,

TA value of 0,503 is given in [8], but calculations with the corresponding formula
yield 0,530,

P
4v),
42—0 RTi0e+ 2nRT,
ST 7% 6p Ly (13)
RT? T
B=%L [—2— (B—T—m)*”m]’
we write (12) in the form '
A B
4 —8B¥= —x.
- a a (14)

We can demonstrate that for temperature differences T, — T w that are not too small (see Section III)
in the case of some fixed value of x we have inequality

Ao _[B N7
7>>°z(7"‘) - (15)

Considering (15), and using the small-parameter method, we find a solution for (14) in the form of

the series )
B 1/3 13 a B 1/3 13 a2 B )2/3 2/3 ]
= (= ] — 2 —— —_— —_— . .
0 (A)x[ 3A<A>x+3A2 al’ (16)

It should be noted that the film thickness g, in the zeroth approximation, according to (16), is proportional
to x!/3, whereas according to the Nusselt theory Sy ™ x1/4,

Using (10) and (16), we can find the heat-flux density q at the wall, according to (5), and from (9) we
can find the liquid temperature T, at the phase interface.

If (15) is not satisfied, i.e., both terms in the left-hand member of (14) are of the same order, we
have to solve (14) by another method to determine &(x).

1I. Let us assume that the interphase resistance is small. As demonstrated by experiment and theo-
retical calculation, this is the case with water-vapor condensation, while when the saturation pressure is
close to the atmospheric, this is also the case for the liquid-metal vapors. The pressure p; can thus be
expressed in terms of the known pressure p,, linearizing the formula for the pressure of the saturated
vapor at the segment T, — T,.

In this case we find a solution for the slightly complicated problem of saturated-vapor condensation
on a vertical surface. We know [13] that in the cooling of the wall its surface temperature does not remain
constant, since the cooling liquid is heated during the flow. We can account for the thermal resistance of a
rather thin wall by treating the temperature T* of its outside surface as a function of the coordinate x.

The system of equations for this conjugacy problem involves the equations of motion (1) and energy
(2) in the liquid film, as well as the heat-conduction equations for the wall at which the condensation is tak-
ing place. Since the wall is rather thin (h « x), the temperature distribution within the wall and within the
liquid film is sought in the form of a function that is linear with respect to y:
T, =b() +c(x)
T=dx+exy.
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Condition (6) is now written in the form
2—o PRTZ 4/ 2nRT.

Te—Ty = 2. a7
7 9 p.L
Atthe liquid—wall interface (y = 0)
T=1, 1L -0 (18)
oy oy
At the outside wall surface (y =—h)
Ty =T*(x). (19)

Conditions (5), (18), and (19) are used to determine the functions b(x), c(x), d(x), and e(x).

Substituting (17) into (9), we find the equation for 6(x)
d Ai ) d 3 #
7 L D)= (0% = Tw —T* ().
dx ( )+( a dx

Here ¢ is calculated from (13), i.e.,

_2—o0 RTL08Y 2aRT.

Ai v GPNL'V
4\h
3N
Since ¢ and A, are constants, we have
4 Ai 3 1 : *
-6+(7+D 6= — | (To—T")dx. 20)
0

Unlike (i4), in (20) the coefficient for 6° is made up of two terms, one of which (A{/a) reflects the
existence of interphase resistance, while the other (D) reflects the thermal resistance of the wall.

Neglecting the wall resistance (D = 0, T* =T = const), we find (20) in the form

w

5t - _’ili_asz.B_lx, 21)
a a

where B, = T — T,

We can demonstrate (Section III) that in a number of cases we have the inequality (for a fixed value of

X)
B 174
ﬂ(éz(—‘x) . (22)
a a
Then, using the small-parameter method, we find the solution for (21) in the form of the series
A, 34 23
where
60 = ( —Bi‘- X)IM. (24)
a

Consequently, the zeroth approximation for §(x) in this case in the classical Nusselt solution.
If (22) is not satisfied, we must sAolve (21) in another way to determine &(x).

It should be pointed out that even for the condensation of water vapor, to determine the film thickness
we are not always able to limit ourselves to the zeroth approximation. We see from Table 1 that if the
condensation factor o= 0.04, even for p_ = 100 mm Hg we should take into consideration the second term
in (23). Moreover, when ¢ = 0.04 and p,, = 10 mm Hg inequality (22) is not satisfied, i.e., both terms in the
left-hand member of (21) are commensurate and the solution of (23) is not reliable.

‘It should be pointed out that the temperature jump at the interface, calculated from (16), is a weak
function of the condensation factor o, since the quantity z in zeroth approximation is inversely propor-
tional to A. However, when the jump is calculated from (23), its value in zeroth approximation is propor-
tional to 2-0) /0.
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Let us return to (20), assuming D # 0 and T* = T*(x). For mercury~vapor condensation, e.g., ona
nickel surface the coefficient D is on the order of 10~ m th ~ 10~2 m). Even for a vapor pressure p, close
to the atmospheric, when Aj/a ~ 6 ~ 10™* m (the interphase is substantially smaller than the wall resis-
tance), instead of (23) we should therefore use (16), replacing A /a in the latter by D + A/a, and replacing

X
B by B(x) = f (T, — THdx.

0

This means that we can draw the conclusion to the effect that consideration of the thermal resistance
of the wall somewhat expands the limits of applicability for a solution such as (16), as described in the pre-
vious section.

In the case of water vapor, when D is on the order of 107°-10"* m (h ~ 1072 m), unlike the Nusselt
expression (which for D = 0 yields good accuracy) we find the solution either in the form of a series as in
(23) (replacing A;/a by A,/a + D), or by numerical solution of (21).

We can examine the boundary-value problem in which, in the place of the boundary condition T|y=0
=T, we use the condition

oT
A — = gy (X).
0}/ y=0
Bearing in mind (10), we derive the equation for 6(x)
8 = Sv S G (®)dx.
Log

0

III. In Table 2 the experimental data [8] on mercury~vapor condensation are compared with the theo-
retical data derived here. The theoretical values have been found on the basis of (168) for 6(x), and this for-
mula is applicable to all the cases considered in [8], since the temperature difference T,—T , across the
film does not exceed 3° and we have inequality (15). In calculating 6(x) we use the two first terms in (16).
The heat-flux density q, calculated with consideration of the zeroth approximation exclusively, is compared
with the experimental qexp [8]. As a result, we find the zeroth approximation for the condensation factor
0y:

%o

Gexp=19 2o

where q, is the value of the heat flow calculated for ¢ = 1.

Since ¢ is found in each term of (16), to refine ¢ we employ an iteration process (2-3 iterations). We
see from Table 2 that the theoretical values are in good agreement with the experimental. The found values
for the film thickness 6 are within the limits the experimental values of [8].

Moreover, the table gives the results derived from the Nusselt theory (24), i.e., without consideration
of the interphase resistance. We see easily that the values of the heat-transfer coefficient wny, calculated
on the basis of Nusselt theory, are considerably greater than the measured values (or those found here with con-
sideration of the interphase resistance).

Table 1 shows the theoretical data on the condensation of water vapor for two values of the condensa~-
tion factor: ¢ =1 and o= 0.04. The calculations were carried out on the basis of (23). These data are
compared with the corresponding values, calculated on the basis of Nusselt theory.

NOTATION
P and p; are, respectively, the saturated-vapor pressures corresponding to Te and Tg;
x and y are the coordinates, respectively, along the wall and along the normal to the wall;
u is the velocity component in the direction of the wall; '
0 is the liquid density;
v and A are, respectively, the coefficients of kinematic viscosity and thermal conductivity for the liquid;
L is the latent heat of vapor condensation;
o is the condensation factor.
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Subscripts

©, (,and 1 pertain, respectively, to the parameters in the vapor, in the liquid at the vapor —liquid
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interface, and in the wall,
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